Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice.
نویسندگان
چکیده
BACKGROUND Atherosclerosis has features of an inflammatory disease. Because cyclooxygenase (COX)-2 is expressed in atherosclerotic lesions and promotes inflammation, we tested the hypotheses that selective COX-2 inhibition would reduce early lesion formation in LDL receptor-deficient (LDLR-/-) mice and that macrophage COX-2 expression contributes to atherogenesis in LDLR-/- mice. METHODS AND RESULTS Treatment of male LDLR-/- mice fed the Western diet with rofecoxib or indomethacin for 6 weeks resulted in significant reductions in atherosclerosis in the proximal aorta (25% and 37%) and in the aorta en face (58% and 57%), respectively. Rofecoxib treatment did not inhibit platelet thromboxane production, a COX-1-mediated process, but it significantly reduced the urinary prostacyclin metabolite 2,3-dinor-6-keto-PGF1alpha. Fetal liver cell transplantation was used to generate LDLR-/- mice null for expression of the COX-2 gene by macrophages. After 8 weeks on the Western diet, COX-2-/- --> LDLR-/- mice developed significantly less (33% to 39%) atherosclerosis than control COX-2+/+ --> LDLR-/- mice. In both the inhibitor studies and the transplant studies, serum lipids did not differ significantly between groups. CONCLUSIONS The present studies provide strong pharmacological and genetic evidence that COX-2 promotes early atherosclerotic lesion formation in LDLR-/- mice in vivo. These results support the potential of anti-inflammatory approaches to the prevention of atherosclerosis.
منابع مشابه
Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice.
To study the possible role of the human lipid-oxidizing enzyme 15-lipoxygenase (15-LO) in atherosclerosis, we overexpressed it specifically in the vascular wall of C57B6/SJL mice by using the murine preproendothelin-1 promoter. The mice overexpressing 15-LO were crossbred with low density lipoprotein (LDL) receptor-deficient mice to investigate atherogenesis. High levels of 15-LO were expressed...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملInflammation and atherosclerosis: novel insights into plaque formation and destabilization.
BACKGROUND AND PURPOSE The simplistic view of atherosclerosis as a disorder of pathological lipid deposition has been redefined by the more complex concept of an ongoing inflammatory response. SUMMARY OF REVIEW Apolipoprotein E and low-density lipoprotein (LDL)-receptor-deficient mice develop accelerated atherosclerosis allowing in-depth pathophysiological investigations. Atherosclerotic plaq...
متن کاملRole of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice.
The mechanism(s) by which exercise reduces atherogenic risk remains unknown. This study tested the hypothesis that sustained exercise-induced oxidative stress may increase antioxidant defense in the arterial wall. Acute exercise induced an increase in antibodies to oxidatively modified proteins and catalase in the aortic walls of normal mice compared with sedentary control mice. In male atherog...
متن کاملMonocytic MKP-1 is a Sensor of the Metabolic Environment and Regulates Function and Phenotypic Fate of Monocyte-Derived Macrophages in Atherosclerosis
Diabetes promotes the S-glutathionylation, inactivation and subsequent degradation of mitogen-activated protein kinase phosphatase 1 (MKP-1) in blood monocytes, and hematopoietic MKP-1-deficiency in atherosclerosis-prone mice accelerates atherosclerotic lesion formation, but the underlying mechanisms were not known. Our aim was to determine the mechanisms through which MKP-1 deficiency in monoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 105 15 شماره
صفحات -
تاریخ انتشار 2002